

DESCRIPTION OF MAP UNITS

- Qf Fill (Holocene) Locally-derived material mounded-up by ranchers to make stockwatering ponds along Picture Rock Wash
- Qal

 Stream alluvium (Holocene) Unconsolidated, poorly sorted clay, silt, sand, pebbles, cobbles, and boulders in modern stream channels, floodplains, and terraces 3 to 6 feet (1 to 2 m) above modern channels; generally less than 10 feet (3 m) thick.
- Younger alluvial-fan deposits (Holocene and latest Pleistocene) Unconsolidated, poorly sorted clay, silt, sand, and gravel found principally below the Bonneville shoreline; generally less than 10 feet (3 m) thick.
- Alluvium and colluvium (Holocene and Pleistocene) Unconsolidated, poorly sorted clay, silt, sand, pebbles, cobbles, and boulders in first-order drainages, on sheet-wash slopes below bedrock outcrops, and in poorly developed alluvial fans; generally less than 30 feet
- (9 m) thick.

 Eolian dune (Holocene and late
 Pleistocene) Well-sorted, silica sand
 and sand-sized, lithic grains in a poorly
 developed dune; about 6 feet (2 m)
- Lacustrine lagoon deposits (Holocene and latest Pleistocene) Unconsolidated clay, silt, and sand in depressions behind cuspate barrier bars; deposited in Lake Bonneville lagoons, and as slope-wash and eolian material in Holocene time; probably less than 10 feet (3 m) thick.
- Fine-grained lacustrine deposits
 (Holocene and latest Pleistocene) Unconsolidated sand, silt, and lesser
 marl and calcareous clay; deposited in
 Lake Bonneville and locally contains
 Holocene alluvial and eolian sediments;
 generally less than 10 feet (3 m) thick.
- Clk

 Lacustrine carbonate sand (latest Pleistocene) Unconsolidated, calcium carbonate-rich, fine- to medium-grained sand, with coarse sand-sized to granule clasts, carbonate pellets and carbonate-coated gastropods; deposited just below the Provo shoreline; maximum thickness less than 15 feet (4.5 m).
- Qlm

 Lacustrine marl (latest Pleistocene) Poorly consolidated white to gray marl
 and lesser clay, silt, and sand;
 characterized by abundant ostracodes;
 deposited in Lake Bonneville; exposed
 thickness up to 6 feet (2 m).
- Qls

 Lacustrine sand (latest Pleistocene) Unconsolidated, moderately sorted,
 fine- to medium-grained sand with
 lesser silt and pebbles; grains are silica
 and volcanic rock fragments; compose
 barrier beaches between the Bonneville
 and Provo shorelines; probably less
 than 10 feet (3 m) thick.
- Unconsolidated sand, gravel (pebbles and cobbles), and silt forming beaches, barriers, tombolos, and spits in Lake Bonneville at and just below the Bonneville and Provo shorelines; may be as much as 30 feet (9 m) thick.
- Undifferentiated lacustrine and/or alluvial deposits (Holocene and late Pleistocene)
 Mostly unconsolidated sand and gravel (pebbles and cobbles) deposited in Lake Bonneville as waves reworked the surfaces of pre-Bonneville alluvial fans, and lacustrine deposits that were partially reworked by post-Bonneville streams and slope-wash; generally less than 10 feet (3 m) thick.
- Intermediate-age alluvial-fan deposits (late to middle Pleistocene) Unconsolidated, poorly sorted clay, silt, sand, pebbles, cobbles, and boulders above the Bonneville shoreline; fan surfaces are inactive and undergoing erosion, and are up to 20 feet (6 m) above modern drainages; generally less than 20 feet (6 m) thick.

 Basalt of Crater Bench (early Pleistocene)
- Black to dark-brown, vesicular basaltic andesite flow containing sparse phenocrysts of plagioclase, clinopyroxene, iron-titanium oxides, and orthopyroxene in a matrix of plagioclase, pigeonite, and glass; distal part of Crater Bench, a shield volcano centered on Fumarole Butte; dated at 0.88±0.1 and 0.95±0.1 Ma (Peterson and Nash, 1980; Galyardt and Rush, 1981); less than 20 feet (6 m) thick.
- Pleistocene and Pliocene) Unconsolidated to semi-consolidated,
 poorly sorted clay, silt, sand, pebbles,
 cobbles, and boulders above the
 Bonneville shoreline; exposed thickness
 60 feet (18 m) or more.
 - Topaz Mountain Rhyolite (Miocene) Divided into:
- Rhyolite flows, domes, and intrusions
 White, gray, and purple rhyolite
 containing sparse (10 to 15 percent),
 small (0.08 inch [2 mm]) phenocrysts
 of quartz and sanidine, and lesser
 plagioclase, biotite, and opaque
 mineral phenocrysts in a matrix of
 devitrified glass; black to brown
 vitrophyre at the base of some flows
 and domes; less than 6.7±0.3 Ma;
 maximum exposed thickness 800 feet
 (240 m)

Ttmt

- Stratified tuff Pale-tan to orange, very thick- to thin-bedded, nonwelded, lithic-rich rhyolitic tuff and volcanic sandstone; contains a variety of volcanic rock fragments, abundant pumice clasts, and sparse crystal fragments in an ash matrix; occurs as discontinuous air-fall and water-laid lenses beneath many rhyolite flows and domes; extensively zeolitized and feldspathically altered; 0 to 260 feet (0 to 80 m) thick.
- Rhyolite porphyry (Oligocene) Small, pale-gray to pink, light-tan weathering rhyolite porphyry dikes and plugs with large (up to 0.4 inch [1cm]) phenocrysts of sanidine, quartz, plagioclase, and biotite in an aphanitic matrix; phenocrysts nearly absent near the margins of intrusions and become more abundant toward the interior; dated by Shubat and Snee (1992) at 35.14±0.15 Ma.
- pink, moderately to densely welded, rhyolitic ash-flow tuff; black vitrophyre locally present at base of unit and overlain by a black fiamme-rich zone; contains abundant, 0.08- to 0.3-inch (1- to 8-mm) phenocrysts of quartz, sanidine, plagioclase, and biotite, and as much as 14 percent lithic clasts; dated by Shubat and Snee (1992) at 34.88±0.06 Ma; maximum exposed thickness 540 feet (160 m), but more than 3,000 feet (915 m) penetrated in subsurface.

Joy Tuff (Oligocene) - Red-brown to

- Mt. Laird Tuff (Oligocene and Eocene)
 Lavender, pale-green, dark-green, and brown, moderately welded, dacitic ashflow tuff; characterized by abundant, 0.08 to 0.47 inch (2 to 12 mm) phenocrysts of white plagioclase; other phenocrysts are hornblende, biotite, quartz, and clinopyroxene; dated by Shubat and Snee (1992) at 36.54±0.06 Ma; maximum exposed thickness 100 feet (30 m), but about 600 feet (180 m) penetrated in subsurface.
- Granodiorite porphyry (Oligocene and Eocene) Light-olive-green plug containing 0.08 to 0.47 inch (2 to 12 mm) phenocrysts of plagioclase, quartz, biotite, hornblende, and clinopyroxene; matrix is fine grained to aphanitic and contains quartz, plagioclase, and potassium feldspar; propylitic alteration common; dated by Lindsey (1982) at 36.6±1.6 Ma.
- Keg Tuff (Oligocene and Eocene) Darkred-brown to black, densely welded, moderately crystal-rich, dacitic ashflow tuff; black vitrophyre locally present at base; abundant, bronzeweathering biotite prominent on surfaces parallel to layering; also contains plagioclase, biotite, quartz, and hornblende phenocrysts; dated by Shubat and Snee (1992) at 36.77±0.12 Ma; exposed thickness 500 feet (150 m).
- Andesite of Keg Pass (Oligocene and Eocene) Heterogeneous, dark-colored flows and less abundant lahars; flows contain phenocrysts of andesine, biotite, hornblende, quartz, clinopyroxene, and magnetite; lahars commonly at base; lahars contain clasts of andesite, quartzite, and limestone; propylitic alteration common; age variable, but as old as 39 and as young as 37 million years old; exposed thickness about 20 feet (6 m)

STRATIGRAPHIC COLUMN

	SYSTEM	STEM SERIES		DRMATION / MAP UNIT	SYM- BOL	THICKNESS Feet (Meters)	LITHOLOGY	
	QUAT.	T. Holocene ? Quaternary deposits Pleistocene Basalt of Crater Bench		Q Qb	0-30 (0-9)		<u>⊾</u> unconformity	
	?	Pliocene ?	Older alluvial-fan deposits		QTaf	0-60+ (0-18+)		unconformity
	T E R T I A R Y	Міосепе	Topaz Mountain Rhyolite	Rhyolite flows, domes, and intrusions	Ttm	0-800 (0-240)	V V V V V V V V V V V V V V V V V V V	—Ttmt
				Stratified tuff	Ttmt	0-260 (0-80)	λογογο ολογολο γον ο γο ολογο ολογο γον ολογο ολογολο γον ολογο ολογολο γον ολογο ολογολο γον ολογο ολογολο γον ολογο ολογολο γον ολογο ολογολο γον ολογο ολογολο	unconformity
		Oligocene	Joy Tuff		Tj	0-540+ (0-160+)	* * * * * * * * * * * * * * * * * * *	Avg. 34.88 ± 0.06 Ma
		Oligocene and Eocene	Mt. Laird Tuff		Tml	0-100+ (0-30+)		Avg. 36.54 ± 0.06 Ma
			Andesite of Keg Pass		Та	0-20+ (0-6+)/	* * * * *	~37-39 Ma
			Keg Tuff		Tk	0-500+ (0-150+)	* * * * * * * * * * * * * * * * * * * *	See correlation chart for probable relationships of Andesite of Keg Pass to Mt. Laird and Keg Tuffs. 36.77 ± 0.12 Ma Ar-Ar

CORRELATION OF MAP UNITS

MAP AND CROSS SECTION SYMBOLS

- B——B—— Bonneville shoreline
- Provo shoreline

A Line of cross section on map

- ______Strike and dip of bedding
 - 45 Strike and dip of layering in volcanic rocks
- $\begin{array}{ccc} \mathsf{PRH}\text{-}1\text{-}1 & \mathsf{Location} \ \mathsf{of} \ \mathsf{sample} \ \mathsf{analyzed} \ \mathsf{in} \ \mathsf{this} \ \mathsf{study} \\ \triangle & (\mathsf{results} \ \mathsf{in} \ \mathsf{table} \ \mathsf{1} \ \mathsf{and} \ \mathsf{appendices}) \end{array}$
- THC-7 Location of mineral exploration drill hole (see table 2)
- —-→ Transport direction on Tombolo

